Weyl, curvature, ricci, and metric tensor symmetries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci curvature of metric spaces

We define a notion of Ricci curvature in metric spaces equipped with a measure or a random walk. For this we use a local contraction coefficient of the random walk acting on the space of probability measures equipped with a transportation distance. This notions allows to generalize several classical theorems associated with positive Ricci curvature, such as a spectral gap bound (Lichnerowicz th...

متن کامل

Ricci Tensor of Diagonal Metric

Efficient formulae of Ricci tensor for an arbitrary diagonal metric are presented.

متن کامل

Metric Ricci curvature for $PL$ manifolds

We introduce a metric notion of Ricci curvature for PL manifolds and study its convergence properties. We also prove a fitting version of the Bonnet-Myers Theorem, for surfaces as well as for a large class of higher dimensional manifolds.

متن کامل

Weyl collineations that are not curvature collineations

Though the Weyl tensor is a linear combination of the curvature tensor, Ricci tensor and Ricci scalar, it does not have all and only the Lie symmetries of these tensors since it is possible, in principle, that “asymmetries cancel”. Here we investigate if, when and how the symmetries can be different. It is found that we can obtain a metric with a finite dimensional Lie algebra of Weyl symmetrie...

متن کامل

Optimal Transportation and Ricci Curvature for Metric Measure Spaces

Moreover, we introduce a curvature-dimension condition CD(K, N) being more restrictive than the curvature bound Curv(M,d, m) ≥ K. For Riemannian manifolds, CD(K, N) is equivalent to RicM (ξ, ξ) ≥ K · |ξ|2 and dim(M) ≤ N . Condition CD(K,N) implies sharp version of the Brunn-Minkowski inequality, of the Bishop-Gromov volume comparison theorem and of the Bonnet-Myers theorem. Moreover, it allows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Theoretical Physics

سال: 1996

ISSN: 0020-7748,1572-9575

DOI: 10.1007/bf02302385